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Abstract. We introduce functions which are solutions to a coherent-state representation of the
Shr̈odinger equation for the pendulum potential. These functions are interpolation functions
between the coordinate and momentum solutions for the quantum pendulum. We also introduce
their classical analogues which are stationary solutions to the classical Liouville equation.

1. Introduction

For the free particle, the linear potential and the harmonic oscillator, the coherent-state
representation has led to phase-space functions which are solutions to equations which
resemble a Schrödinger equation in phase space. These functions were found to comply
with the uncertainty relationship and they were also found to approach a classical stationary
density in the appropriate limit [1–11]. Even though the introduction of an additional
variable in the coordinate representation of quantum mechanics, in a more or less arbitrary
manner, makes things more complicated, by using coherent-states as a basis for a ‘phase-
space’ wavefunction we are led to probability densities which contain quantum information
and that can be used in making comparisons between classical and quantum dynamics.

In this paper, we introduce phase-space functions which can be used as eigenfunctions
for the quantum pendulum in phase space. In section 2, we briefly review the coherent-
state representation as is used in this work. The set of functions used to solve the quantum
pendulum model in phase space is discussed in section 4. These functions are phase-space
versions of the Mathieu functions used in coordinate space. In section 3, we use these
functions to solve a Schrödinger-like equation for the quantum pendulum in phase space.
We analyse these functions for the cases in which the quantum number is small or large
and we also look for what the classical limit of them could be.

2. Coherent-state quantum phase-space representation

In this paper, we make use of a coherent-state representation of non-relativistic quantum
mechanics [1–11] in which the operators associated to momentumP̂ , coordinateQ̂, and
inverse coordinatêQ−1, are given by

P̂ ↔ p

2
− ih̄

∂

∂q
Q̂↔ q

2
+ ih̄

∂

∂p
and Q̂−1↔ − i

h̄
eipq/2h̄

∫
dp e−ipq/2h̄.

(1)
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They are just half-Bopp operators. [2] These operators do not commute with each other, in
fact [Q̂, P̂ ] = ih̄. Based on these operators, the phase-space Schrödinger equation is given
by

ih̄
∂

∂t
〈0|ψ〉 =

[
1

2m

(
p

2
− ih̄

∂

∂q

)2

+ V
(
q

2
+ ih̄

∂

∂p

)]
〈0|ψ〉 (2)

where 〈0|ψ〉 = ψ(0; t) denotes the time-dependent phase-space function. Within this
representation one can analyse formally, as well as numerically, quantum dynamics entirely
in phase space in the same way as is done in coordinate or abstract representations.

For instance, the finding of eigenvalues and eigenfunctions of the Hamiltonian operator
can be done by analytically solving the eigenvalue problem,[

1

2m

(
p

2
− ih̄

∂

∂q

)2

+ V
(
q

2
+ ih̄

∂

∂p

)]
〈0|ψE〉 = E〈0|ψE〉 (3)

as is done in the following section for the pendulum, or numerically, or by propagating a
non-stationary initial phase-space function〈0|ψ0〉 and utilizing the standard time-dependent
formalism which requires use of the Fourier transform limT→∞

∫ T
−T dt exp(iωt)〈ψ0|ψt 〉,

from which the eigenvalues are obtained, and of

〈0|ψE〉 ∝ lim
T→∞

1

2T

∫ T

−T
dt eiEt/h̄〈0|ψt 〉 (4)

which gives the eigenfunctions.
Another way of relating coordinate or momentum spaces with this phase-space

representation is by means of unitary operators as

exp

(
−ih̄

∂

∂p

∂

∂q

)
eipq/2h̄

[
1

2m

(
p

2
− ih̄

∂

∂q

)2

+ V
(
q

2
+ ih̄

∂

∂p

)]
e−ipq/2h̄ exp

(
ih̄
∂

∂p

∂

∂q

)

= 1

2m

(
−ih̄

∂

∂q

)2

+ V (q) (5)

and

exp

(
ih̄
∂

∂p

∂

∂q

)
e−ipq/2h̄

[
1

2m

(
p

2
− ih̄

∂

∂q

)2

+ V
(
q

2
+ ih̄

∂

∂p

)]
eipq/2h̄ exp

(
−ih̄

∂

∂p

∂

∂q

)
= p2

2m
+ V

(
ih̄
∂

∂p

)
. (6)

These results indicate that the eigenvalues are the same for all three representations,
coordinate, momentum and phase space. We also see that, when the phase-space equation
is reduced to the coordinate equation in the above manner, the momentum variable results
in a superconservative variable which does not participate in the dynamics, and something
similar happens when we reduce the phase-space equation to the momentum one.

3. Quantum pendulum in phase space

The classical Hamiltonian for the pendulum is given by [13]

H(θ, L) = L2

8ml2
+mgl(1− cos 2θ) (7)
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whereL is is the momentum conjugate to the angle variableθ , m is the mass of the
particle, g is the acceleration due to gravity andl is the length of the pendulum. Since
this system is a conservative one, the energyE is constant and equal to the Hamiltonian
E = H(θ, L). Even though the space considered in section 2 is aR × R phase space and
the pendulum space is aS×Z phase space, we will follow the quantization rule of replacing
conjugate variables with the phase-space operators of section 2, in a similar way as is done
in coordinate representation. Then, the quantization of the classical pendulum is made by
means of the replacements

E→ ih̄
∂

∂t
L→ L

2
− ih̄

∂

∂θ
θ → θ

2
+ ih̄

∂

∂L
(8)

which lead to the phase-space Schrödinger-like equation

ih̄
∂

∂t
ψ(θ, L; t) =

{
1

8ml2

(
L

2
− ih̄

∂

∂θ

)2

+mgl
{

1− cos

[
2

(
θ

2
+ ih̄

∂

∂L

)]}}
ψ(θ, L; t).

(9)

The scaling of the angular momentumL by h̄ and the rearranging of terms gives, for the
time-independent equation,{(

L̄

2
− i

∂

∂θ

)2

− a + 2q cos

[
2

(
θ

2
+ i

∂

∂L̄

)]}
ψ(θ, L̄) = 0 (10)

where

L̄ = L

h̄
a = 8

ml2

h̄2 (E −mgl) q = −4m2gl3

h̄2 . (11)

This equation has the form of a Mathieu equation but in phase space. Equation (13) (see
the appendix), has an infinite number of solutions in phase space, namely cepn(θ, L, q) and
sepn(θ, L, q). These functions are interpolation functions between the eigenfunctions in
coordinate and momentum spaces depending upon the value of the parameter 0< σ <∞.

A density plot of the squared magnitude of the lowest five eigenfunctions, and one
with large energy, withq = −1 andσ = 1/

√
2, are shown in figure 1. They are ordered

according to increasing values of energy (values ofa), a = −0.4543,−0.1102, 2.1411,
3.9170, 4.3704 and 156.253 221. We have chosenσ = 1/

√
2 because this is the value

which leads to densities that better resemble their classical analogues and give equal weight
to bothθ andL (see the appendix).

In the four lowest eigenfunctions, quantum interference is so strong that the density
does not follow a classical trajectory, but for large energies the quantum density resembles
the classical trajectory. The value ofa closest to the energy of the separatrix is 2.1411
which corresponds to sep1. For this function, the maximum probability is at the crossing
point of the separatrix, the hyperbolic points atp = 0 andθ = (2n+ 1)π .

In figure 1 the heights of the contour lines are equally spaced and the height of the
lowest contour level is at 0.1 of the maximum height of the density. However, the part of
the density with very small values gives additional information about the quantum dynamics.
In figure 2 we show the same eigenfunctions as in figure 1 but now the heights of the contour
levels increase asz8, with the lowest level at 10−8 of the maximum value. We can see that
there is a small part of the density that exists far from where the density is a maximum, in
regions of large classical energy. The number of zeros goes from 16 to 24 in a period of
2π in θ and their distribution in phase space varies with the eigenfunction.
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Figure 1. Density plots of some pendulum eigenfunctions in phase space. The values ofa are
−0.4543,−0.1102, 2.1411, 3.9170, 4.3704 and 156.253 221. The lines in these plots indicate
the separatrix for this system.

We expect that the quantum densities approach the classical ones when ¯h→ 0 or when
the energy is large, i.e. whena is large. Due to the rescaling we made, the limit ¯h→ 0 is
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Figure 2. Density plots of the same pendulum eigenfunctions in phase space as in figure 1, but
now the heights of the contour levels increase asz8.
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Figure 3. Density plots of the classical analogues, exp[−(a − H)2/2λ2a2], corresponding to
the quantum densities in figure 1. The values ofσ are 3, 20, 0.6, 0.6, 0.65, 0.5, 0.45 and 0.4.
The lines indicate the separatrix for this system.

equivalent to large values ofa andq. The classical analogues taken here are

e−[a−H(θ,L)]2/2λ2
(12)

where the dimensionless parameterλ has been chosen as to obtain a classical density with
the same width inp as the quantum one. In figure 3 there are density plots of this classical
density for the same energy values (i.e. the same values ofa) as those in figure 1 decreased
by the ground value.
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θ
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Figure 4. Density plot of the Wigner density for the pendulum
ground state.

After a comparison between the densities in figures 1 and 3, we see that at low energies,
there are big differences between quantum and classical densities, but for large energies the
two densities are very similar.

4. Concluding remarks

The phase-space analysis of quantum systems is an intriguing and interesting subject. In this
work, we have illustrated one way of doing phase-space quantization with the quantization
of the pendulum model. The proposed functions are the solutions to a time-independent
Schr̈odinger-like equation in phase space, which comply with the uncertainty relationship,
and, depending on the value of the parameterσ , they can be used to describe the quantum
system in coordinate, momentum or phase spaces. These functions approach a classical
stationary density in the limit of large energies.

We can compare with another of the phase-space densities, namely the Wigner function.
For instance, the Wigner density corresponding to the pendulum ground state is shown in
figure 4. As usual, the Wigner function is not large around classical trajectories and oscillates
on other regions of phase space.

With the results in this paper, we have increased the collection of special functions
and eigenstates in phase space which can be used in the comparison between quantum and
classical dynamics. The use of a coherent-state representation can be a good option for the
analysis of quantum systems in phase space.

We have used this representation in the analysis of quantum dynamics around
separatrices and stochastic webs in regular and non-regular systems [14].
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Appendix. Mathieu functions in phase space

Let us consider the two-variables equation{(
L

2
− i

∂

∂θ

)2

− a + 2q cos

[
2

(
θ

2
+ i

∂

∂L

)]}
w(θ, L) = 0. (13)
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A solution to the above equation is written in terms of a set of eigenfunctions of the operator
(L/2− i∂/∂θ)2,

cosp(θ, L,m) =
√

2σ
√

2π exp

[
− iL

2
(θ − i2σ 2L)− σ 2m2

]
cos

[
m(θ − i2σ 2L)

]
(14)

sinp(θ, L,m) =
√

2σ
√

2π exp

[
− iL

2
(θ − i2σ 2L)− σ 2m2

]
sin
[
m(θ − i2σ 2L)

]
(15)

where 0< σ <∞ is a real parameter which meaning is given below. These are the phase-
space versions of cos(x) and sin(x) appropriate for a phase-space analysis of quantum
systems. Some of the properties of these functions are

|cosp(θ, L,m)|2 = σ
√
π

2

[
e−2σ 2(m−L)2 + e−2σ 2(m+L)2 + 2e−σ

2[(m+L)2+(m−L)2] cos(2mθ)
]

(16)

|sinp(θ, L,m)|2 = σ
√
π

2

[
e−2σ 2(m−L)2 + e−2σ 2(m+L)2 − 2e−σ

2[(m+L)2+(m−L)2] cos(2mθ)
]

(17)(
L

2
− i

∂

∂θ

)
cosp(θ, L,m) = imsinp(θ, L,m) (18)(

L

2
− i

∂

∂θ

)
sinp(θ, L,m) = −imcosp(θ, L,m) (19)(

L

2
− i

∂

∂θ

)2

cosp(θ, L,m) = m2cosp(θ, L,m) (20)(
L

2
− i

∂

∂θ

)2

sinp(θ, L,m) = m2sinp(θ, L,m) (21)(
θ

2
+ i

∂

∂L

)
cosp(θ, L,m) = (θ − 2iLσ 2)cosp(θ, L,m)− 2σ 2msinp(θ, L,m) (22)(

θ

2
+ i

∂

∂L

)
sinp(θ, L,m) = (θ − 2iLσ 2)sinp(θ, L,m)+ 2σ 2mcosp(θ, L,m) (23)

cos

[
2

(
θ

2
+ i

∂

∂L

)]
cosp(θ, L,m) = 1

2

[
cosp(θ, L,m+ 2)+ cosp(θ, L,m− 2)

]
(24)

cos

[
2

(
θ

2
+ i

∂

∂L

)]
sinp(θ, L,m) = 1

2

[
sinp(θ, L,m+ 2)+ sinp(θ, L,m− 2)

]
. (25)

From these relations we can see that the modulus squared of these functions are periodic,
of period π in θ , the peaks are located along the linesL = ±m and that they decay
as the exponential of(m ± L)2 in the L direction. Whenσ → 0, |cosp(θ, L,m)|2 →
2σ
√

2π cos2(mθ) and |sinp(θ, L,m)|2 → 2σ
√

2π sin2(mθ). However, whenσ is large,
they become|cosp(θ, L,m)|2 = |sinp(θ, L,m)|2 ≈ π [δ(m − L) + δ(m + L)]/2. Thus,
cosp and sinp areσ -dependent interpolation functions between these two limiting functions.
Density plots of the real and imaginary parts of some of these functions can be found in
figures 5 and 6.

The equalities[(
L

2
− i

∂

∂θ

)
+ i

2σ 2

(
θ

2
+ i

∂

∂L

)]
cosp(θ, L,m) =

(
L+ iθ

2σ 2

)
cosp(θ, L,m) (26)[(

L

2
− i

∂

∂θ

)
+ i

2σ 2

(
θ

2
+ i

∂

∂L

)]
sinp(θ, L,m) =

(
L+ iθ

2σ 2

)
sinp(θ, L,m) (27)



Special functions in phase space: Mathieu functions 6733

0

2

4

-2

-4

L

Re cosp(  ,L,0)θ Im cosp(  ,L,0)θ

0

2

4

-2

-4

Re cosp(  ,L,1)

L

θ Im cosp(  ,L,1)θ

0.0 1.3 2.6-1.3-2.6

0

2

4

-2

-4

Re cosp(  ,L,2)

θ

L

θ

1.3 2.6-1.3-2.6 0.0
θ

Im cosp(  ,L,2)θ

Figure 5. Density plots of the real and imaginary parts of cosp(θ, L,m) for m = 0, 1, 2 and
σ = 1/

√
2.

indicate that cosp and sinp are eigenfunctions of the operatorL̂+ iθ̂/2σ 2 with eigenvalue
the phase pointL + iθ/2σ 2. The value ofσ influences the operator and the functions
favouring theθ variable whenσ is small, or favouring the variableL for σ large, but, a
value ofσ = 1/

√
2 gives equal weight to bothθ andL.
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Figure 6. Density plots of the real and imaginary parts of sinp(θ, L,m) for m = 1, 2 and
σ = 1/

√
2.

Other equalities are∫
dθ eiθL/2sinp(θ, L,m) = − 1

m
eiθL/2cosp(θ, L,m) (28)∫

dθ eiθL/2cosp(θ, L,m) = 1

m
eiθL/2sinp(θ, L,m) (29)(

L

2
− i

∂

∂θ

)−1

sinp(θ, L,m) = − i

m
cosp(θ, L,m) (30)(

L

2
− i

∂

∂θ

)−1

cosp(θ, L,m) = i

m
sinp(θ, L,m) (31)

where (
L

2
− i

∂

∂θ

)−1

= ie−iθL/2
∫

dθ eiθL/2 (32)

and

1

2σ
√

2π

∫ π

−π
dθ eiL(θ−i2σ 2L)+2σ 2m2

cosp(θ, L,m)cosp(θ, L, n) = δm,nπ (33)
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1

2σ
√

2π

∫ π

−π
dθ eiL(θ−i2σ 2L)+2σ 2m2

sinp(θ, L,m)sinp(θ, L, n) = δm,nπ (34)

1

2σ
√

2π

∫ π

−π
dθ eiL(θ−i2σ 2L)+2σ 2m2

cosp(θ, L,m)sinp(θ, L, n) = 0 (35)∫ π

−π
dθ cosp∗(θ, L,m)cosp(θ, L, n) = δm,nπσ

√
2π [e−2σ 2(L−n)2 + e−2σ 2(L+n)2] (36)∫ π

−π
dθ cosp∗(θ, L,m)sinp(θ, L, n) = −iδm,nπσ

√
2π [e−2σ 2(L−n)2 − e−2σ 2(L+n)2] (37)∫ π

−π
dθ sinp∗(θ, L,m)sinp(θ, L, n) = −δm,nπσ

√
2π [e−2σ 2(L−n)2 + e−2σ 2(L+n)2]. (38)

From the last three equations, we see that the phase-space functions cosp(θ, L,m) and
sinp(θ, L,m) are orthogonal, but cosp∗(θ, L,m) and sinp(θ, L,m) are not orthogonal, only
when e−2σ 2(L−n)2 ≈ e−2σ 2(L+n)2, whenL � n, n � L, n = 0, on theθ axis, i.e.L = 0, in
the limit σ → 0 or in the limit σ →∞.

Now, the solution to equation (13), which squared modulus has a period ofπ or 2π in
θ , is written as the linear combination

w(θ, L) =
∞∑
n=0

[Ancosp(θ, L, n)+ Bnsinp(θ, L, n)] (39)

where B0 can be taken as zero. Upon substitution in the partial differential equation
equation (13), one obtains
∞∑

m=−2

[(a −m2)Am − q(Am−2+ Am+2)]cosp(θ, L,m)

+
∞∑

m=−1

[(a −m2)Bm − q(Bm−2+ Bm+2)]sinp(θ, L,m) = 0 (40)

A−m,B−m = 0 m > 0. (41)

At this point, we note that the above relationship is the same as the one found in the solution
of the usual Mathieu equation [12], with cosp(θ, L,m) and sinp(θ, L,m) replacing cos(mθ)
and sin(mθ), respectively. With this in mind, we can take the results already developed for
Mathieu functions. Equation (41) can be reduced to one of four simpler types,

w(θ, L) =
∞∑
m=0

A2m+pcosp(θ, L,2m+ p) p = 0 or 1

w(θ, L) =
∞∑
m=0

B2m+psinp(θ, L,2m+ p) p = 0 or 1

with recurrence relations(a−m2)Am−q(Am−2+Am+2) = 0 for even solutions (aA0−qA2 =
0 for solutions with periodπ and(a − 1)A1− q(A1+A3) = 0 for solutions of period 2π )
and(a−m2)Bm−q(Bm−2+Bm+2) = 0 for odd solutions ((a−4)B2−qB4 = 0 for solutions
of periodπ and(a − 1)B1+ q(B1− B3) = 0 for solutions of period 2π ).

The characteristic values fora are

a0(q) = −q
2

2
+ 7q4

128
− 29q6

2304
+ 68 687q8

18 874 368
+ · · · (42)

a1(−q)
b1(q)

}
= 1− q − q

2

8
+ q

3

64
− q4

1536
− 11q5

36 864
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Figure 7. Density plots of the real and imaginary parts of cepn(θ, L, q = −1) for n = 0, 1, 2
andσ = 1/

√
2.

+ 49q6

589 824
− 55q7

9437 184
− 83q8

35 389 440
+ · · · (43)

b2(q) = 4− q
2

12
+ 5q4

13 824
− 289q6

79 626 240
+ 21 391q8

458 647 142 400
+ · · · (44)
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Figure 8. Density plots of the real and imaginary parts of sepn(θ, L, q = −1) for n = 1, 2 and
σ = 1/

√
2.

a2(q) = 4+ 5q2

12
− 763q4

13 824
+ 1002 401q6

79 626 240
− 1669 068 401q8

458 647 142 400
+ · · · (45)

a3(−q)
b3(q)

}
= 9+ q

2

16
− q

3

64
+ 13q4

20 480
+ 5q5

16 384
− 1961q6

23 592 960
+ 609q7

104 857 600
+ · · · (46)

with a = ar (a = br ) associated with even (odd) periodic solutions. The corresponding
functions are

cep0(θ, L, q) =
1√
2

{
cosp(θ, L,0)− q

2
cosp(θ, L,2)

+q2

[
cosp(θ, L,4)

32
− cosp(θ, L,0)

16

]
−q3

[
cosp(θ, L,6)

1152
− 11cosp(θ, L,2)

128

]
+ · · ·

}
(47)

cep1(θ, L, q) = cosp(θ, L,1)− q
8

cosp(θ, L,3)

+q2

[
cosp(θ, L,5)

192
− cosp(θ, L,3)

64
− cosp(θ, L,1)

128

]
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−q3

[
cosp(θ, L,7)

9216
− cosp(θ, L,5)

1152
− cosp(θ, L,3)

3072
+ cosp(θ, L,1)

512

]
+ · · · (48)

sep1(θ, L, q) = sinp(θ, L,1)− q
8

sinp(θ, L,3)

+q2

[
sinp(θ, L,5)

192
+ sinp(θ, L,3)

64
− sinp(θ, L,1)

128

]
−q3

[
sinp(θ, L,7)

9216
+ sinp(θ, L,5)

1152
− sinp(θ, L,3)

3072
− sinp(θ, L,1)

512

]
+ · · · (49)

cep2(θ, L, q) = cosp(θ, L,2)− q
[

cosp(θ, L,4)

12
− cosp(θ, L,0)

4

]
+q2

[
cosp(θ, L,6)

384
− 19cosp(θ, L,2)

288

]
+ · · · (50)

sep2(θ, L, q) = sinp(θ, L,2)− q sinp(θ, L,4)

12
+ q2

[
sinp(θ, L,6)

384
− sinp(θ, L,2)

288

]
+ · · · . (51)

For higher-order solutions, we can use

cepν(θ, L, q) = cosp(θ, L, ν)− q
4

[
cosp(θ, L, ν + 2)

(ν + 1)
− cosp(θ, L, ν − 2)

(ν − 1)

]
+q

2

32

[
cosp(θ, L, ν + 4)

(ν + 1)(ν + 2)
+ cosp(θ, L, ν − 4)

(ν − 1)(ν − 2)

]
− q3

128

[
(ν2+ 4ν + 7)cosp(θ, L, ν + 2)

(ν − 1)(ν + 1)3(ν + 2)
− (ν

2− 4ν + 7)cosp(θ, L, ν − 2)

(ν + 1)(ν − 1)3(ν − 2)

+ cosp(θ, L, ν + 6)

3(ν + 1)(ν + 2)(ν + 3)
− cosp(θ, L, ν − 6)

3(ν − 1)(ν − 2)(ν − 3)

]
+ · · · (52)

sepν(θ, L, q) = sinp(θ, L,1)− q
4

[
sinp(θ, L, ν + 2)

(ν + 1)
− sinp(θ, L, ν − 2)

(ν − 1)

]
+q

2

32

[
sinp(θ, L, ν + 4)

(ν + 1)(ν + 2)
+ sinp(θ, L, ν − 4)

(ν − 1)(ν − 2)

]
− · · · (53)

where

a = ν2+ q2

2(ν2− 1)
+ (5ν2+ 7)

32(ν2− 1)3(ν2− 4)
q4+ 9ν4+ 58ν2+ 29

64(ν2− 1)5(ν2− 4)(ν2− 9)
q6

+ · · · (54)

and q2/2(ν2 − 1) � ν2, ν = m + p/s, m a positive integer. The squared magnitude of
these functions have period 2πs or πs in θ accordingly asp is odd or even,s > 2. Density
plots of some of these functions can be found in figures 7 and 8. In the limit ofσ → 0,
these functions approach the usual one-variable Mathieu functions, and forσ → ∞, they
approach the Fourier transform of Mathieu functions, a collection of delta functions centred
at L±m.

These functions are also eigenfunctions of the operatorL̂+ iθ̂/2σ 2 with eigenvalue as
the phase pointL+ iθ/2σ 2,[(
L

2
− i

∂

∂θ

)
+ i

2σ 2

(
θ

2
+ i

∂

∂L

)]
cepi(θ, L, q) =

(
L+ iθ

2σ 2

)
cepi(θ, L, q) (55)
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L

2
− i

∂

∂θ

)
+ i

2σ 2

(
θ

2
+ i

∂

∂L

)]
sepi(θ, L, q) =

(
L+ iθ

2σ 2

)
sepi(θ, L, q). (56)

We can see that a value ofσ = 1/
√

2 gives equal weight to bothθ andL.
As for cosp(θ, L,m) and sinp(θ, L,m) the functions cepn(θ, L, q) and sepn(θ, L, q)

are orthogonal (see equations (34)–(38)), but cep∗
n(θ, L, q) and sepn(θ, L, q) are orthogonal

only when 0� L, on the θ axis, i.e.L = 0, in the limit σ → 0, which corresponds
to the coordinate space, or in the limitσ → ∞, which corresponds to the momentum
representation.
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